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Image Source: https://ev-database.org/de/pkw/1941/Opel-Corsa-Electric-50-kWh
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Image Source: https://www.robosense.ai/en/rslidar/RS-Helios

Image Source: https://www.stereolabs.com/products/zed-2

Image Source: https://www.nuscenes.org/nuscenes#data-collection
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Image Source: https://www.latimes.com/business/story/2023-10-11/waymo-driverless-
taxi-launch-in-santa-monica-met-with-excitement-tension
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Image Source: https://medium.com/intro-to-artificial-intelligence/semantic-segmentation-
udaitys-self-driving-car-engineer-nanodegree-c01eb6eaf9d



1. Motivation

• Task: Train Autonomous Vehicles
• Traditional Approach:

1. Acquire a Vehicle

2. Acquire Sensors

3. Collect data

4. Label data

5. Train Network
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Aditya Prakash et al. „Multi-Modal Fusion Transformer for End-to-End Autonomous Driving“ CVPR, 2021.



What are the Problems?

• Equipment is very expensive!
• LiDAR: 1.200€ - 12.000€

• Stereo Camera: > 200€

• Car: < 40.000€

• High time investment
• Collecting data

• Labelling data

• Bias in dataset

• Exhausting other Resources…
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2. Synthetic Data Generation

• What is Synthetic Data?
• Data that has been created artificially

• Used as training data for transfer learning

• Should cover phenomenon of real data

 Capture realism as much as possible
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Erroll Wood et al. “Fake It Till You Make It: Face analysis in the wild using synthetic data alone”



2. Synthetic Data Generation

• What is Synthetic Data?
• Data that has been created artificially

• Used as training data for transfer learning

• Should cover phenomenon of real data

 Capture realism as much as possible

• What are the Challenges?
• Expense of computational resources and time

• Task dependent

• Domain gap problem
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Erroll Wood et al. “Fake It Till You Make It: Face analysis in the wild using synthetic data alone”



Domain Gap
• Content Gap

• Variety of data
• Approximate preal such that psyn ≈ preal

Domain randomization
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Dwibedi et al.“Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection”
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Goodfellow, Ian, et al. "Generative adversarial networks."
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Domain Gap
• Content Gap

• Variety of data
• Approximate preal such that psyn ≈ preal

Domain randomization

• Appearance Gap
• Materials, Assets
• Rendering systems
 Sophisticated Generation Methods (Task dependent)

• What are Generation Methods?
• Simple Augmentations
• Generative Models, GANs
• Simulators
• Many more…
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How to achieve Realism in Simulators?
• High-quality Assets and Materials

• Accurate implementation of Sensors
• Cameras (Synthetic Images)

• State-of-the-art Rendering

• LiDAR (Synthetic Point Clouds)

• Accurate ToF implementation

      Implementations vary highly across Simulators

Example: Naïve LiDAR ToF implementation with Glass
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3. Methodology

• What are the Goals?
• Creation of an accurate Digital Twin

• Replicate real Scenario

• Audit Isaac Sim’s proficiency in data synthesis
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3. Methodology

• What are the Goals?
• Creation of an accurate Digital Twin

• Replicate real Scenario

• Audit Isaac Sim’s proficiency in data synthesis

• How do we assess the Synthetic Data Generation?
• Evaluate synthetic data against real counterpart

• Cover different test cases (Diffuse, transparent and highly reflective Objects)
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Physical Setup

• Sensors
• ZED 2 Stereo Camera

• LiDAR RS-Helios-32-5515

• Environment
• Cube Tower with different Materials

• Controlled Environment

• Scan
• Multiple rounds around the Cube Tower

• RGB Images, Point Clouds, Pose
and Timestamp data
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Data Processing

• Inconsistent Amount of data collected
• No Pose for every recorded Image and

Point Cloud
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Name Amount

Poses 3281

Left Images 3332

Point Clouds 1161



Data Processing

• Inconsistent Amount of data collected
• No Pose for every recorded Image and

Point Cloud

• Interpolate missing Pose information
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Name Amount

Poses 3281

Left Images 3332

Point Clouds 1161



Virtual Setup

• Real Environment has been 
modelled within Isaac Sim
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Virtual Sensors

• Camera
• Standard stage camera

• LiDAR
• PhysX LiDAR (Naïve ToF implementation)

• RTX LiDAR (Considers predefined Material characteristics)

• Isaac Sim’s coordinate convention
• World: Z = Up, X = Forward

• Camera: Y = Up, -Z = Forward

Rotate Sensors by -90° around the Z and Y axis, such that they
look at the virtual Cube Tower
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Simulation and Data Synthesis
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Post-Processing

• Synthetic Images
• Virtual Cameras are not affected by noise

 Apply Gaussian Noise filter

• Synthetic Point Clouds
• We are only interested in Point Cloud data of our Cube Tower

• Virtual and Real LiDAR have a 360° FoV

 Unnecessary point data for structures we are not interested in
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Post-Processing
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1

Initial Masking

2

3 4

Outlier Detection

DBSCAN Cluster
Detection



4. Results

• Image Similarity Metrics

• Point Cloud Similarity Metrics
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Metric Description Value Range

RMSE Root-mean-square error [0, ∞)

PSNR Peak signal-to-noise ratio [0, ∞)

SRE Signal-to-reconstruction error ratio [0, ∞)

SSIM Structural similarity index [0, 1]

Metric Description Value Range

RMSE Root-mean-square error [0, ∞)

HD Hausdorff distance [0, ∞)

CD Chamfer distance [0, ∞)



Image Quality Measurements

• Path interpolation had no significant change on Synthetic Images

• Satisfying average SSIM and SRE values
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Metric Average Value Best Value

Interpolated Path Non-interpolated Path Interpolated Path Non-interpolated Path

RMSE 0.18 0.18 0.13 0.13

PSNR 15.04 15.04 17.23 17.23

SRE 51.52 51.52 52.80 52.80

SSIM 0.71 0.71 0.78 0.78



Image Quality Measurements
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Image Quality Measurements
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Image Quality Measurements
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SRE



Image Quality Measurements
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Point Cloud Similarity Measurements

• Path interpolation yields in general better results

• Best RMSE and CD measures for PhysX LiDAR

• However best HD measure for RTX LiDAR
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Metric Average Value

Interpolated Path
RTX

Non-interpolated Path
RTX

Interpolated Path
PhysX

Non-interpolated Path
PhysX

RMSE 0.051 0.054 0.046 0.047

CD 0.12 0.13 0.1 0.1

HD 0.27 0.28 0.28 0.28



Point Cloud Similarity Measurements
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Point Cloud Similarity Measurements
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Point Cloud Similarity Measurements
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• Green   = Real LiDAR Scan
Blue      = RTX LiDAR Scan
Orange = PhysX LiDAR Scan

• RTX and PhysX LiDAR detect
Mirroring Cube

• Only PhysX LiDAR detects
Glass Cube



Point Cloud Similarity Measurements
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• PhysX LiDAR exhibits
too much detail

• RTX LiDAR introduces
noise into the data



5. Conclusion

• Synthetic Data Generation is an important tool for today’s Industry
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5. Conclusion

• Synthetic Data Generation is an important tool for today’s Industry

• Closing the Domain Gap with Simulators
• Need of high quality Assets

• State-of-the-art Rendering

• Accurate implementation of Sensors
Common LiDAR ToF implementation pitfalls

• Isaac Sim
• Satisfying Synthetic Images with just an approximated Model of Real 

Environment

• PhysX LiDAR follows common Naïve LiDAR implementation

• RTX LiDAR introduces a better attempt at simulating real LiDAR sensors
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What could have been improved?

• Improved controlled Environment for Scans
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What could have been improved?

• Improved controlled Environment for Scans

• More accurate Assets of real World Scenario

• Well-known Start and End Positions with exact Distance measurements

• Comparing data synthesis capabilities of other Robotics Simulators in 
contrast to Isaac Sim

• Assessment of Isaac Sim’s depth sensing capabilities

• Applying ML model to determine performance by training with synthetic 
and real data
• Object recognition, Segmentation, 3D Pose Estimation

• Hybrid Solutions
• Simulators with GANs along with domain randomization
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Thank you for your attention!
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