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habe und dass ich die Stellen der Arbeit - einschließlich Tabellen und Ab-
bildungen -, die anderen Werken oder dem Internet im Wortlaut oder dem
Sinn nach entnommen sind unter Angabe der Quelle als Entlehnung kenntlich
gemacht habe.

Kaiserslautern, den 16.10.2023

Patrick Noras

ii



Abstract

Synthetic data has become an ever-increasing important tool for countless use
cases in research and today’s Industry 4.0. Deep neural networks (DNN), arti-
ficial intelligence (AI), and other machine learning (ML) applications require
exceedingly large and well-annotated data sets, to be trained with. Apart
from many other synthetic data generation methods, simulators remain to be
the standard technique for synthesizing large amounts of data. However, clos-
ing the domain gap between synthetic and real data proposes to be a difficult
challenge. Many conventional industry simulators do not implement com-
mon sensors utilized in robotics accurately. This thesis focuses on delivering
an assessment for NVIDIA’s Omniverse Isaac Sim, a robotics simulator and
synthetic data generation toolkit, in the context of simulating a real-world sce-
nario. For the evaluation, a stereo camera and a light Detection and Ranging
(LiDAR) sensor were chosen to determine the accuracy and performance in cre-
ating accurate image and point cloud data. A simple cube tower structure was
built, which was later reconstructed within Isaac Sim virtually. The sensors
were as realistically modeled as possible and enhanced with post-processing
methods. Results showed that, with an approximated reconstructed environ-
ment of our real scenario, we achieved good synthetic image quality measures.
Additionally, with Isaac Sim’s newly added RTX LiDAR sensor, we were able
to synthesize similar point clouds of our real scans.
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1. Introduction

1.1. Problem Statement

Data synthesis has emerged as a potent tool to accelerate research and devel-
opment in the domain of AI applications. As data that is used for training
is required in great quantity and quality, the generation of desired data sets
has become a bottleneck in development due to its crucial effect on the model
that is trained. Unfortunately, there are still many issues that remain unsolved
in the domain of data synthesis. One of them is the applicability of models
trained with synthetic data to real domains. Furthermore, the generation of
synthetic data sets is also a challenge itself. Capturing realism for sensors,
such as LiDAR and stereo cameras, poses to be a difficult task. Replicating
noise and phenomenons, where sensors interact with reflecting or transparent
surfaces, are challenges today’s industry faces.

1.2. Motivation

To illustrate the importance of data synthesis, consider a scenario, where a
task has been given to train an autonomous vehicle (AV). The traditional ap-
proach would be, obtaining a car with a handful of sensors and drive on public
roads. Currently, developers and researchers often require exceedingly large,
accurately labeled data sets. Therefore we would need to spend a vast amount
of time on public roads to collect as much data as possible, to eventually train
our AV. After data acquisition, humans have to manually label data sets and
verify their usability, spending even more time on acquiring an applicable data
set for training. At this point, in addition to considerable time loss, we also
very likely spent an exceedingly amount of money and exhausted other re-
sources. This problem is not an entirely new one and has been a big challenge
for today’s industry. To put things into perspective, Waymo an autonomous
driving company of Alphabet Inc., announced publicly that their AVs have
driven more than 20 million miles on public roads [1].
The scenario mentioned above is merely one among many facing similar data
challenges. Today’s Industry 4.0 opened many brand-new possibilities to
approach these challenges like autonomous robots, simulations, Internet of
Things and many more [2]. The most promising solution to the data problem
is the one of generating synthetic data. Waymo is one of many industry exam-
ples that already make use of synthetic data to train their models. More than
10 billion miles of simulated driving were leveraged to improve the robustness
of their self-driving vehicles [3].
Synthetic data is information that has been created artificially using advanced
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Chapter 1: Introduction

algorithms. These can then be used as training data, instead of relying on
data that has been produced by real-world scenarios. An important aspect of
generating synthetic data is, that it fulfills provided conditions. Synthesized
data should capture the phenomenon of real data, but it should also include
scenarios real data does not encapsulate. The biggest profiteers of synthetic
data are modern AI and ML models. A major benefit is that synthetic data
can be generated during the training of ML models, alleviating the need to
store data. Most of the time synthetic data is used for transfer learning in
ML applications. When synthesizing data, one wants to achieve, as previously
stated, realism. This implies for example, that synthetically generated images
need to look as photo-realistic as possible. However sometimes realism isn’t
necessary, but this depends on the use case.
Generative adversarial networks (GANs), which are a type of unsupervised
learning method, are a powerful tool for generating synthetic data. The idea
is, that the discriminator neural network evaluates how realistic the generator
creates for example images, and thus fine-tunes itself to minimize the distance
between artificial and real data. This type of approach is used a lot in com-
puter vision tasks [4]. Another common trend in generating synthetic data is
the combination of a digital 3D world with the physical world, creating what is
nowadays called a digital twin (DT). This technology enables replicating and
simulating our real world where testing, analyzing, modeling, and predicting
becomes much easier and faster [5]. Various applications already exist that for
example use Reinforcement Learning (RL) to train a smart robot to navigate
through a building. Here robots perceive their surroundings by applying scene
reconstruction, object detection, tracking, etc. with virtual sensors.

A range of existing industry tools are available for tackling the above men-
tioned tasks. Tools such as: Unity and the Unreal Engine are powerful real-
time 3D development platforms mostly used by the gaming and film industry
to create content. But they are also practised to build DTs to perform physics-
based simulations. Researchers Steve Borkman et al. proposed a package for
Unity to generate synthetic data for computer vision tasks [6]. NVIDIA Om-
niverse which is an upcoming and promising industry tool, is a real-time 3D
graphics collaboration platform that is attempting on realizing authentic and
accurate DTs. With NVIDIA Isaac sim, Omniverse offers a robotics simu-
lation platform that promises photorealistic and physically accurate virtual
environments. Additionally, it makes use of Omniverse Replicator to provide
tools for synthetic data generation [7]. Automotive companies like Mercedes-
Benz used NVIDIA Omniverse to replicate their manufactoring and assembly
facilities to accelerate production [8]. Therefore, it can be said that Omniverse
is a state-of-the-art tool for Industry 4.0, that implements all of the mentioned
characteristics above.
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1.3. Outline

1.3. Outline

The goal of this thesis is to analyze NVIDIA’s Isaac Sim performance and
capabilities in generating accurate synthetic data. Before diving deeper into
the topic of synthetic data and its current challenges, Chapter 2 will provide
the required preliminaries. In Chapter 3 of this thesis we will discuss the
current state of research regarding data synthesis. However, we will focus
more on generated synthetic point clouds and image data, which are common
sensory inputs for today’s smart robots and AVs to navigate through their
environment. The need for an in-depth analysis will be expended upon and
what the current research gaps are for generating synthetic data. Furthermore,
in Chapter 4 of this work, an overview of the selected approach for analyzing
Isaac Sim and the used setup, both physical and virtual, will be presented. In
the following Chapter 5 various metrics will be discussed and the final results
shown. Finally, in Chapter 6 of this thesis, a summary of this work will be
stated, with closing thoughts on how the future work, building up on this
thesis, might look like.
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2. Preliminaries

This chapter will introduce the fundamentals necessary to comprehend the
reviewed literature and methodology of this thesis. Section 2.1 demonstrates
the ROS 2 system, which is widely popular in the robotics community and
has thus found its usefulness for the topic that this thesis is concerned with.
Following Section 2.1, Section 2.2 establishes an understanding on how Li-
DAR sensors work, such that the virtual implementation within Isaac Sim
and other simulators can be comprehended more effectively. Lastly, to gain
deeper insights into how the simulation and data synthesis in Isaac Sim func-
tions, Section 2.3 will introduce many of the essential concepts of Isaac Sim
utilized in this work. This will be necessary to efficiently demonstrate the
selected workflow for the following chapters.

2.1. ROS 2 - Robot Operating System 2

ROS 2 is, as the name falsely suggests, not an operating system. Instead, it
is considered a middleware aimed at providing a service for robotics applica-
tions. This allows developers to write software not for one manufacturer, but
for many different robots since they all share the common interface ROS 2
offers. This also enables to apply written code for ROS 2, to be employed on
virtual robots and vice versa [9].
The most crucial part of a ROS 2 system is the ROS graph. All processes,
computations, and communication happen in the ROS graph, which is built
on an anonymous publish/subscriber model. Communication in the graph oc-
curs between nodes over topics. A node executes computations in the ROS
Graph and utilizes the ROS client library to communicate with other nodes.
The purpose of nodes is to split up the work in a robotics system, i.e. each
node implements a different task in the robot. As already mentioned, commu-
nication takes place over topics. Each node can decide what type of messages
it receives from other nodes, by subscribing to a particular topic, that is pub-
lished by another node in the graph. Many standard message types are already
provided by the ROS 2 system, which includes pose, image, velocity, and other
sensory or motor data.
To write custom code for ROS 2, client libraries provide the functionality to
do API calls to the core ROS client library. Language-specific client libraries,
such as rclcpp and rclpy for C++ and Python, allow for example nodes that
were written in different programming languages to communicate with each
other.
Lastly, ROS 2 is augmented by numerous of the tools developed for it. Such
tools enable for example to visualize and record data of published topics by
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Chapter 2: Preliminaries

nodes in the ROS graph. One of those tools employed in this work is called
rosbag2. The primary functionality of this command line tool is to record and
playback ROS 2 messages and store them in a database.

2.2. LiDAR - Light Detection and Ranging

LiDAR is a Time of Flight (ToF) sensor, that utilizes lasers to determine the
distance of an object in the environment relative to the sensor. It adopts ToF
given that the object’s distance is determined by the time taken of the emitted
laser pulse traveling through the air until it hits a surface which then reflects
to the sensor. Therefore the formula to calculate the distance of an object is
as follows:

d =
c · t
2

(2.1)

where d is the distance, c is the speed of light, and t is the time spent for the
laser pulse to travel to the object and back to the detector [10]. Figure 2.1
illustrates this concept visually.
Besides the distance, a LiDAR sensor also captures the intensity and spher-
ical coordinates of the obstacle. Former, describes the strength of the laser
that has returned from the surface it encounters, thus the value represents the
reflectivity of an object for the particular wavelength of light. Current state-
of-the-art LiDAR sensors employ wavelengths of 905nm and 1550nm [11]. For
this reason, laser pulses interact similarly to various materials and structures
as does light, i.e. phenomenons like scattering, diffraction, and reflection apply
to light rays from LiDAR sensors. Another crucial ability of modern LiDAR
technology is to distinguish multiple returns from a single laser pulse. This
is possible because of the diameter of an emitted laser pulse. Sometimes only
a part of the light ray reflects off an object and the rest keeps traveling until
it hits another obstacle. This can result in multiple reflections from a single
laser pulse that the detector registers. We speak of First, Second, and Last
Returns. With this ability, we can extract different kinds of elevations of nu-
merous objects [12].
As already mentioned above, a LiDAR sensor returns point data in spherical
coordinates. In a spherical coordinate system, the radial distance r, eleva-
tion angle zenith θ, and horizontal rotation angle azimuth ϕ describe a point
(r, θ, ϕ). In Figure 2.2, we can observe how such a point can be determined
visually in a three-dimensional space. However, converting to the commonly
used Cartesian coordinate system can be done with the following equations:

x = r sin θ cosϕ

y = r sin θ sin θ

z = r cos θ

(2.2)

There exists a wide variety of use cases where LiDAR has been successfully
employed. Accordingly, we find many different types of LiDAR sensors, such
as stationary or rotary ones with different wavelength properties and pulse
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2.3. Isaac Sim

Figure 2.1.: Visual demonstration
of the ToF concept, to
calculate distance [14]

Figure 2.2.: Spherical coordinates
of the point (r, θ, ϕ)
[15]

times. Apart from most other sensors, acquiring a LiDAR sensor can be very
costly, ranging from US$1200 to more than $12000 [13].

2.3. Isaac Sim

As already introduced in the motivation of this thesis, NVIDIA Isaac Sim is
a robotics simulation and synthetic data generation toolkit on the NVIDIA
Omniverse platform. Isaac Sim offers the ability to create virtual robotic
experiments and the necessary tools to build physically accurate simulations
with various sensors for data collection [16].
Omniverse, and thus Isaac Sim, use the Universal Scene Description (USD)
file format as a backbone to describe scenes. Developed originally by Pixar,
USD is an open-source framework for collaboratively constructing large-scale
3D scenes [17]. It allows us to define geometries, materials, lights, cameras,
and more. The root of a scene described within a USD file is the stage. As
an abstraction for a scene graph, a stage composes all elements and references
within a scene. It allows for quick traversal of the scene and efficient data
queries. The primary elements inside a USD stage are called prims. Prims
can contain other prims and properties representing important data, e.g. a
Mesh with properties defining its vertices and faces. If a USD scene is saved,
it can be loaded or referenced in another scene.
Within a USD file, materials can be defined and assigned using the Material
Definition Language (MDL). Developed by NVIDIA, the open-source shad-
ing language is specifically designed to define materials and the behavior of
light [18]. Therefore, it serves a different design purpose than a shading lan-
guage such as GLSL, whose main motivation is to describe shaders for real-
time graphic applications. However, MDL still supports traditional computer
graphics techniques such as normal mapping and cut-outs.
Included heavily in the system architecture of Isaac sim, are extensions and
Omniverse Kit. To build or interact with objects within a scene in Isaac sim,
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NVIDIA offers besides the standard USD API by Pixar, Omniverse Kit, which
provides simple commands to accelerate the process of creating robots or sim-
plifying commonly used USD API tasks. Extensions on the other hand, as the
name already suggests, extend the capabilities of Isaac Sim. ROS 2 Bridge
and Replicator are core extensions of Isaac Sim to achieve the full power of
realizing accurate DTs. Latter is NVIDIA’s synthetic data generation tool
for training CV AI and other ML models [19]. By generating a render prod-
uct with Replicator and connecting it to one of the sensors Isaac Sim offers,
the renderer will produce realistic 3D graphics, thus enabling us to extract
synthetic sensory data. Additionally, by attaching annotators to our render
products, we are able to collect ground truth annotations such as distance
to the image plane, instance segmentation, point cloud, camera parameters,
and many more [20]. With writers, Replicator offers compact and easy-to-use
modules that process different kinds of annotations from render products and
produce specific data formats that for example can be used for training ML
models. Replicator is built upon PhysX, USD, and MDL which means one
can easily manipulate material, light, sensor, or geometrical properties in Isaac
Sim. One of Replicator’s main purposes is the realization of domain random-
ization, which will be explored more in-depth in Section 3.4.
Lastly, Isaac Sim offers a handful of tools for researchers and engineers to
collaboratively work on a project. One of which is Omniverse Nucleus, a
database where multiple users connect to exchange and access USD and MDL
files. Changes in the database are transmitted in real-time to clients under a
publish/subscriber model [21].
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3. Related Work

In this chapter, a deeper look at the current state of research and development
regarding synthetic data and its methods of generation will be shown. How-
ever, this work primarily investigates the accuracy of synthetic images and
synthetic point clouds. Due to this fact, a detailed investigation of these types
of synthetic data will be presented in Section 3.1 and Section 3.2, instead of of-
fering a general outlook. For each of the presented data types, a short overview
of applications and state-of-the-art data sets will be introduced, along with
current drawbacks. The problem of closing the domain gap between synthetic
and real data proposes to be the biggest challenge for researchers and has thus
gained the most focus. Therefore we will investigate current data synthesis
methods and their issues in Section 3.3. Section 3.4 will end this chapter by
illustrating the ongoing problems in closing the domain gap and its proposed
solutions.

3.1. Synthetic Images

As already mentioned synthetic images and synthetic point clouds will be the
main focus for analysis in this thesis. Concerning the former, researchers, es-
pecially in the CV community, have so far made extensive use of it.
Here problems such as optical flow estimation, stereo image matching, ob-
ject detection/recognition, and tracking, benefit greatly from correctly labeled
images. In many cases, it is advantageous to use already modeled and well-
studied synthetic data sets. In a survey by Sergey I. Nikolenko a great overview
is given of synthetic data sets for various applications, that mainly affect com-
puter vision tasks, which involve synthetic images predominately [22]. For
example, Dosovitsky et al. published a synthetic data set Flying Chairs that
illustrates 3D modeled chairs on real backgrounds, intending to tackle the op-
tical flow problem [23]. Here, like in many cases, the use of synthetic data to
train models outperformed previously state-of-the-art models that tradition-
ally were trained on real images. As mentioned in the introduction of this
thesis, the discussion of synthetic data requiring to capture realism, has been
further investigated for the use case of optical flow estimation by Nikolaus
Mayer et al. [24]. Results showed that realism in this case is not strictly nec-
essary, although knowing certain camera parameters, such as lens distortion or
blur may improve training. In another study by Yair Movshovitz-Attias et al.,
the question if photo-realism is practical for training models has been explored
in greater depth [25]. Their results illustrated that for view-point estimation
in a 3D environment, using complex materials decreases the error of estima-
tion. Further investigating the need for realistic synthetic images, researchers
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Chapter 3: Related Work

S. Hartwig and T. Ropinski examined the impact of reflecting materials in
synthesized images [26]. We observe for the case of synthesized images that
realism is dependent on the use case and that it can promise improvements
for many scenarios, as we will see in further work done by other researchers.
One of the most popular computer vision tasks, which benefits from the use
of synthetic data, is the one of face detection and eye tracking. A great effort
has been made to approach this challenge and with the classic and popular
framework of the Viola Jones face detector by P. Viola and M. Jones, a break-
through has been made in 2001 [27]. This method for face detection, which
makes use of the learning algorithm AdaBoost, has been a building block for
much research to come. Since then, countless other methods have been devel-
oped and a sufficiently large amount of manually labeled data sets have been
collected. The problem of face detection is considered to be mostly solved by
the academic community. However common problems are face expressions,
lighting, occlusion, viewpoints, and bias. Thus collecting enough real data
for all scenarios is unlikely. Synthetic data can be used to clear up the re-
maining challenges. In a recent publication by Erroll Wood et al. it has been
shown that using synthetic data alone, in this case synthetically generated
faces, match or even outperform models trained on real data [28]. In this par-
ticular context, the faces have been photo-realistically rendered, with a wide
variety of randomized faces, exhibiting furthermore the importance of realism
in synthetic data.

3.2. Synthetic Point Clouds

For many applications, a LiDAR-based sensor is very beneficial for various
deep learning tasks, such as detection [29] and segmentation [30]. AVs, drones,
and other autonomous systems are one of many popular safety-critical appli-
cations using LiDAR successfully, that require a steady stream of precise point
cloud data to tackle such challenges. However as illustrated in the beginning of
this thesis, obtaining such data sets is a costly operation. Acquiring equipment
alone, that means a LiDAR sensor, can be very expensive, as demonstrated in
Section 2.2.
The generation of accurate and labeled synthetic LiDAR point cloud data has
therefore been a big challenge for researchers. Many synthetic point cloud
data sets exist, as they did, however in much greater quantity, for synthetic
image data. One such data set is the publicly available SynthCity large-scale
synthetic point cloud data set [31]. In this instance, the researchers D. Grif-
fiths and J. Boehm constructed an urban environment within Blender and
simulated a laser sensor with the help of a plugin for Blender to then receive
synthetic point cloud data for their virtual setting. The intention is to provide
a large-scale data set for pre-training a classification or segmentation model.
In another work by Fei Wang et al., CARLA (CAR Learning to Act) [32], an
open-source simulator for autonomous driving, has been used in combination
with a hand full of digital assets, to generate synthetic point cloud data [33].
It was shown that using synthetic point cloud data can improve overall per-
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formance and generalization efforts for deep learning models. This is the case
when real data is limited in its scenarios, which is the reason why synthetic
data in such cases aids in achieving better performance.
However, many of these approaches suffer from a lack of realism. A common
obstacle is the need for high-quality 3D assets with accurate materials so that
scenarios with phenomena such as reflectance and transparency can be real-
istically modeled. Researchers V. Zyrianov, X. Zhu, and S. Wang, proposed
their LiDARGen generative model, to produce asset-free LiDAR point cloud
data, as an attempt to alleviate the problem of needing realistic 3D assets
[34]. Another issue is that the majority of LiDAR simulations are not ac-
curate when it comes to simulating LiDAR effects, namely noise or raydrop.
Latter, is the effect when laser rays hit a glass object, the rays are refracted
and often don’t return. Many simulators implement virtual LiDAR sensors
with a ray casting method to replicate the ToF effect. This means, that on
each ray casting step, we check if the ray collided with an object in the 3D
environment. To accelerate the raytracing process, it’s common to test colli-
sion on bounding volumes of objects. This limitation can often cause, mostly
transparent or specular objects, to appear fully opaque, since they only detect
a hit on the bounding box and return the distance of the object to the sensor.
This is one potential outcome of overfitting a model with data produced this
way. Since the virtual LiDAR sensor produces too precise point cloud data,
which doesn’t resemble real-world data at all.
The underlying mentioned problem of correctly simulating noise and raydrop
has since been the next milestone for achieving accurate synthetic LiDAR point
cloud data. Benôıt Guillard et al. have proposed a data-driven approach for
simulating realistic LiDARs [35]. With a model called RINet, the researchers
showed that phenomenons like raydrop can be learned from real data. When
applied to naively ray casted synthetic point clouds, improvements in realism
can be observed, by dropping points that would have not returned to the sen-
sor. In another work, by Sivabalan Manivasagam et al., a similar approach
was chosen [36]. Here a neural network called LiDARsim, learns the sensor’s
raydrop characteristics on real data, to then create realistic virtual LiDAR
point cloud data. To achieve the noisiness of real LiDAR rays, researchers
Gusmão G.F., Barbosa C.R.H., and Raposo A.B. suggest applying Gaussian
noise to represent error in the measurement [37].

3.3. Generating Synthetic Data

So far we discussed the specific types of synthetic data and available data sets,
that are most popular and desired by researchers and today’s industry. What
remains to be investigated further, is the generation of synthetic data. One
of the simplest and most common approaches is to augment already exist-
ing real data. Straight-forward augmentations like rotating an image already
aid in increasing the size and variety of an existing data set. However, data
augmentation does not create new synthetic data, it is a technique to modify
existing real data. Another method that can be considered as synthetic data
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generation is to cut and paste existing data together. Researchers Dwibedi et
al. demonstrated in their paper the practical usage of such an approach in the
context of object detection [38].
Regardless, the most popular and common method is the usage of a virtual
3D environment to produce data for a specific scenario. Many simulators exist
for various settings that offer photorealistic rendering or accurate sensor sim-
ulations to provide a means of generating synthetic images or 3D point clouds
of virtual 3D objects. Simulators are especially favored to approach problems
such as Simultaneous Localization and Mapping (SLAM) and various other
RL tasks. The reason is, having full control over the simulated environment
and sensors, that makes detailed and precise analysis possible. In the intro-
duction of this thesis, we shortly introduced two powerful 3D game engines:
Unity and Unreal Engine as industry standard tools for creating video games
and other types of content. These engines already provide many tools for
rendering photorealistic 3D scenes and can be used as building blocks to suc-
cessfully generate synthetic data and build simulators for specific cases. For
example, the urban driving simulator CARLA is based on the Unreal Engine
4 which provides sensors such as RGB cameras, depth cameras, optical flow
cameras, LiDAR sensors, and many more. However, some researchers prefer
to build their own custom engines, such that certain desired computations are
faster. Gazebo [39] is a custom-built robotics simulator using OpenGL that
primarily aims to simulate common robotics sensors and supports the ROS 2
system. It has been an industry standard for robotics simulation for a long
time, because of its realistic physical engine and its integration of ROS. As
an alternative for Gazebo, MuJoCo (Multi-Joint Dynamics with Contact) [40]
is an open-source physics engine also for robotics simulations. Many of the
existing engines for simulations can also be further categorized into simulators
for outdoor and indoor scenes. Simulators such as CARLA or AirSim [41], a
flight simulator created by Microsoft, are known for their strengths in outdoor
scenarios but can be used for indoor scenes as well.
Lastly, a new trend is to use GANs to produce synthetic data, or to refine it,
making it more realistic with smart augmentations. To create new synthetic
data, GANs first need an input of real data to approximate new data that
resembles the underlying phenomenon of the input. Researchers such as Zhao
et al. used GANs successfully to improve the realism of synthetically created
faces, by applying their model DA-GAN (Dual-Agent GAN) [42]. On the
other hand, directly creating synthetic data from random noise with GANs,
is considered to still be a hard challenge to solve and is currently one of the
limitations GANs have. Additionally, computation and training can be costly
and time-consuming, moreover, problems such as non-convergence and mode
collapse are still problems from which many GANs suffer [4]. However, in this
thesis, we will not further investigate the capabilities of GANs. Instead, we will
examine NVIDIA’s Omniverse Isaac Sim ways of solving the above-mentioned
problems of simulators generating accurate synthetic image and point cloud
data.
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3.4. Research Gap

Synthetic data and its generation are without a doubt one of the crucial tech-
niques used in today’s state-of-the-art methods for numerous computer vision,
RL, and other ML tasks. Its promise of providing limitless unique and labeled
data is appealing to many researchers and has thus been researched exten-
sively for many years. It has so far found its usage in fields like healthcare,
business, education, AI-generated content, Natural Language Processing, and
more [43].
Nevertheless, as it has been pointed out in the sections on synthetic image
and point cloud data, there are still many problems left unsolved. Challenges,
like how well synthetic data represents the real world, are important for ML
models to be robust. Researchers have shown that synthetic data encounters
problems in embodying the real underlying phenomenon of real data and that
it includes data bias [44]. Another issue can be that the generated synthetic
data overestimates the real world, ensuring an overfitted model [45].
Many of these difficulties can be associated with the domain gap between syn-
thetic and real data. The gap can even be further divided into two parts: the
appearance and content gap [46]. Former, refers to the difference between the
real and synthetically rendered data which is influenced by materials, assets,
and rendering systems used. The content gap, on the other hand, is concerned
with the difference between the real and synthetic domain. That is, how di-
verse is the synthesized data set in comparison to the variety of real data
that can occur. The attempt to close the domain gap, for both subcategories,
has so far attracted many researchers in the academic community. Existing
methods such as including real data in training processes, which originally
only contained synthetic data, or fine-tuning a model with real data after
pre-training it with synthetic data are common ideas to optimize. However,
improving the quality of synthetic data such as increasing photorealism has so
far been mostly focused on. In terms of synthetic images, the goal is to use
highly advanced rendering techniques to improve data quality. As discussed
in the section on synthetic images, it is still unclear for some applications if
photorealism is necessary. Nevertheless, it has been shown, that tasks such
as face detection and 3D pose estimation greatly benefit from it. In the con-
text of the domain gap between synthetically generated and real point cloud
data, many effects like raydrop or LiDAR noise are sometimes not realistically
modeled, considered as a post-processing step or even not regarded at all.
Thus they propose to be challenges in closing the domain gap. Note that the
computational resources necessary and time spent are often a tradeoff when
synthesizing highly realistic data.
A popular method on the rise for lowering the domain gap, more specifically
the content gap, is domain randomization. The idea of domain randomiza-
tion is that, given the data distribution µreal for our real data, we want to
approximate or ideally cover µreal with µsyn the synthetic data distribution.
Realistically µsyn will never be equal to µreal. Nevertheless, to achieve a ro-
bust model trained on synthetic data, we only need to make it diverse enough.
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By randomizing properties such as the 3D/2D position, quantity, shape, and
material of objects or changing the light intensity, position, and orientation,
we cover a lot of different scenarios for our synthetic data set. In the work of
J. Tremblay et al., it was demonstrated that with the help of domain random-
ization, a model trained for object detection performed equally well as with
traditionally used real data sets [47]. By randomizing textures of simple geo-
metric shapes, it was concluded that even photorealistically rendered images
were outperformed.
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4. Methodology

This chapter is dedicated to discussing the selected approach in assessing the
accuracy and performance of Isaac Sim. Section 4.1 presents in a high-level
manner the design principles under which we want to test Isaac Sim as a
simulator and synthetic data generation tool. For this purpose, a system has
been built that can be separated into three main components. Moving beyond
Section 4.1, Section 4.2 dives deeper into the realization of a physical setup
and data acquisition. Additionally, Section 4.3 will illustrate the usage of Isaac
Sim to simulate our real-world scenario from Section 4.2, by demonstrating
the modeling and simulation approach. Finally, we will exhibit post-processing
methods in Section 4.4.

4.1. Methodological Overview

The initial idea to asses NVIDIA’s Isaac Sim’s proficiency in data synthesis
is the creation of an accurate DT within this simulator. With this in mind,
we want to audit Isaac Sim for two key areas that we explored in Chapter 3.
First, for the case of synthetic images, we want to examine how well we can
model and photorealistically render our scene so that it matches our real data.
Furthermore, as our second category, we want to check if, Isaac Sim is subject
to the same issues for virtual LiDAR sensors as it does for other simulators
and data sets. In other words, an effort will be made to realistically model our
real LiDAR sensor within Isaac Sim and analyze both outputs against each
other.
To achieve such an evaluation against synthetically generated and real data,
we want to compare the similarity of each real data attribute to its synthetic
counterpart. In other words, we will feed Isaac Sim position and orienta-
tion data recorded during real scans and replicate the process virtually while
synthesizing data. The fundamental process of this thesis and the system ar-
chitecture can be split into three modules. The very first one entails everything
with the physical world. This means, that questions such as: which sensors
to use, what setup to design (for it to be later reconstructed virtually), which
features are necessary, and how we acquire them, are all topics associated with
the first step of this pipeline. In Section 4.2 we will explore in more detail how
all of these problems have been approached. Playing a more integral part of
this architecture, the second module involves data synthesis and virtual recre-
ation within NVIDIA’s Isaac Sim. To go more into detail, it will be discussed
how Isaac Sim operates with our given scenario, what challenges have been
encountered, and additionally what post-processing methods have been used.
Section 4.3 will, with the knowledge of the previous section about the physi-
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cal setup, get to a greater extent about the mentioned properties of this part
in the research process. Finally, the last component and Chapter 5 of this
work is related to the assessment of Isaac Sim’s capabilities in synthetic data
generation. The choice of metrics for synthetic to real image and point cloud
comparison will be examined with the inclusion of performance measurements.
Figure 4.1 illustrates in a high-level manner the proposed system architecture
used for this work. In this context, we can see that the recorded data from our
physical setup will be used as an input, as it is typical for a DT. After a careful
process of extracting important features for our needs, we begin by providing
position and orientation data to our synthetic data generation module, which
in this case is Isaac Sim. By additionally rendering our reconstructed scene
and modeling our sensors, we can then proceed by replicating our real sce-
nario virtually and thus synthesize data with our digital sensors. After the
generation of our data, we will compose a series of calculations to assess the
accuracy of our simulation and as a result, we will receive measurements for
further analysis.

Figure 4.1.: System architecture. Components colored in orange represent the
parts dealing with real data. Blue components involve synthetic data.
Lastly green depicts the process of comparing synthetic to real data

4.2. Physical Setup

Directly following up the overview of this chapter, will be the section of the
physical setup. Here we will be exploring in more detail how the first com-
ponent of the system architecture has been realized. More specifically it will
be demonstrated under what research goals the real setup was chosen to test
Isaac Sim. Subsection 4.2.1 presents the selected sensors for data collection
and testing environment where all experiments have been conducted. In Sub-
section 4.2.2 the process of data acquisition and feature extraction with the
help of ROS 2 and interpolation will be illustrated.

4.2.1. Experimental Environment and Sensors

To capture raw RGB and depth images, the ZED 2 stereo camera has been
selected for this work. In the context of collecting point cloud data, the Li-

16



4.2. Physical Setup

DAR RS-Helios-32-5515 3D Laserscanner was chosen. The characteristics of
both sensors can be found in Table 4.1 and Table 4.2. Both sensors have been
mounted on a remote-controlled mobile robot, as can be seen in Figure 4.2.
The open-source robotics middleware ROS 2 is applied, to collect sensor data
and to control the motors of the robot. Connecting the ZED 2 with the ROS
node of the ROS 2 wrapper for the ZED SDK and the RS-Helios LiDAR sensor
with the ROS node of the ROS 2 wrapper for the RoboSense LiDAR SDK,
enables us to publish all of the necessary data into the ROS ecosystem. The
sensors and their parameters remained unchanged throughout all tests.
During this thesis, several experimental design choices have been made for
the purpose of having an easy-to-replicate setup while still including impor-
tant testing parameters for the virtual sensors of Isaac Sim. As we already
explored in Chapter 3 of this thesis, many domain gap problems arise due
to the lack of realistically implemented sensors or rendering techniques. For
this reason, the goal is to evaluate how NVIDIA’s realization of a simulator for
generating synthetic data, in the context of images and point clouds, operates.
Therefore we want to include assessments for how Isaac Sim’s camera and Li-
DAR sensor interact with different material properties, such as transparency
and high specularity. Consequently, our initial hypothesis according to the
reviewed literature, is that the generated synthetic data will be too detailed.

ZED2 Stereo Camera

parameters values

Baseline 120mm
Focal Length 2.12mm
Field of View 110°(H) × 70°(V)
Aperture f/1.8
Output Resolution 896× 512

Table 4.1.: Specifications of the ZED2 stereo camera

LiDAR RS-Helios-32-5515

parameters values

Wavelength 905nm
Range 0.2m - 150m
Range precision ±2cm @ 1m - 100m
FoV Horizontal/Vertical 360°/70°
Horizontal/Vertical resolution 0.2°/1.33°
Rotation speed 10Hz (600rmp)
Number of Emitters 32

Table 4.2.: Specifications of the LiDAR RS-Helios-32-5515 3D-Laserscanner

Considering the above-mentioned testing parameters, the experimental setup
has been built to satisfy these as much as possible with the given resources.
First, the structure to scan with our real sensors and later test the virtual
sensors with has been the main concern for this work. For this case, the idea

17



Chapter 4: Methodology

Figure 4.2.: Mobile robot used for
scans. Located on the
top is the LiDAR sen-
sor and in the middle
the ZED 2 camera

Figure 4.3.: Simple cube tower con-
struction. Inclusion
of transparent and re-
flecting materials as
test cases

of using a simple structure is important, such that the problem of modeling a
complex structure within Isaac Sim will be alleviated. In addition, less room
for modeling errors is given, since these can impact the realism of the resulting
synthetic data of our virtual sensors. Therefore a simple cube tower structure
has been built, consisting of three 30x30x30cm and thirty 3x3x3cm cuboids.
The larger cubes have been stacked on top of each other, while the thirty
smaller cuboids have been utilized to construct two small structures on top
of the tower. However, two of the large cuboids, namely the middle and top
ones, are not actual cubes. Geometrically speaking, are those two structures
heptahedrons, which are polyhedrons with seven faces. The intention behind
the two small cube structures on top of the tower and the heptahedrons is to
give the structure some sense of complexity, while still making it easy to repli-
cate it inside Isaac Sim. A demonstration of the final construction can be seen
in Figure 4.3. Immediately apparent from the presented figure, are the choices
of materials. From our review of related literature to synthetic data and our
testing goals for Isaac Sim, the inclusion of four different materials has been
made. Starting with the smaller cuboids that form two structures on top of
the tower, the choice of oakwood as a simple testing parameter for diffuse sur-
faces has been settled upon. Furthermore, the heptahedron on the top, which
is made out of foam, serves as another test for diffuse surfaces. However, due
to the nature of foam, we also include an assessment of materials with sub-
surface scattering properties. In the middle of the tower, a decision has been
reached to incorporate materials with high specularity, Thus, the heptahedron
in the middle resembles an almost perfect mirror on all five faces. Lastly, as
an evaluation for transparency, the bottom cuboid is a glass cube which is
hollow on the inside.
An occurring problem during experiments has been the factor of natural light
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Figure 4.4.: Illustration of a path
taken to scan the cube
tower with various dis-
tances

Figure 4.5.: Cube tower inside
the isolated structure
with illuminating light
source

and other sources of light illuminating complex geometry surrounding our cube
tower. The reason for this being an issue is that reflections and other illumi-
nation factors from objects around the cube structure unpredictably influence
the lighting. It proves to be a challenge to position light sources within our
virtual scene since determining the intensity and position of all light sources
is unfeasible. As a result, an environment that isolates the constructed cube
tower from almost all complex geometry surrounding it is desired, since this
gives again less room for modelling errors. Therefore, the challenge of re-
constructing the surroundings of the cube tower, which would be visible by
our camera, will be less of a problem. Thus, an encapsulating environment
has been fabricated with dimensions of 2.90m in length/width and 1.50m in
height. Six partition walls, consisting of thin cardboard placed within oak
frames, were placed together to form the back, left, and right isolation walls
for the environment. The front has been left open, in order to see and drive
the robot inside of it. At last, thin cardboard has been used once more to seal
the constructed enclosure, preventing many of the unwanted complex struc-
tures from illuminating the scene with reflections. Unfortunately, the thin
cardboard used as partition walls is only 1m tall, and thus leaves 50cm of
the back wall open for some of the original environment outside the isolating
surroundings to be seen. Additional problematic inconsistencies of the encap-
sulation structure, which should be kept in mind, are the open front view and
the material the structure has been made out of. For illuminating the cube
tower from inside the controlled environment, a tubular LED light source with
a dimension of 90x2x2cm has been selected and placed in the back right cor-
ner. Measuring the light source with the MT-912 Light Meter yields 29.6klx.
The final testing environment, with the light source and cube tower, can be
seen from the inside in Figure 4.5.
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4.2.2. Data Acquisition and Feature Extraction

As already introduced in the methodological overview of this chapter, a process
of data acquisition and feature extraction is applied. Illustrated in Figure 4.4,
the remotely controlled mobile robot, seen in Figure 4.2, has been utilized to
collect data from our cube tower setup, which has been discussed in detail in
the previous section of this chapter. The robot was instructed to always face
the cube construction with the stereo camera and multiple rounds have been
driven with various distances to broaden our variability in the acquired data
set.

Recorded ROS 2 topics

Name Type Amount

/zed2/zed node/pose geometry msgs/msg/PoseStamped 3281
/zed2/zed node/left/camera info sensor msgs/msg/CameraInfo 6771
/zed2/zed node/left/image rect color sensor msgs/msg/Image 3332
/rslidar points sensor msgs/msg/PointCloud2 1161

Table 4.3.: Table of topics that have been collected during scans

ROS 2 has been employed on the mobile robot to collect sensor, pose, and
configuration data from both of our applied sensors. Utilizing rosbag2, ROS 2
records and stores its published topics in a database, with the functionality to
replay this data again. The list of all topics and the amount of data collected
are listed in Table 4.3. In this instance, the data was stored in an SQLite
database, which saved each topic in the table with a respective timestamp.
Since all of the data stored is encoded by ROS 2, a parser has been written
that deploys rclpy (ROS Client Library for Python) to deserialize messages
while querying for the according to topic IDs. The code block seen in Code 4.1
first queries timestamp and data from the table messages where the topic id
matches our desired topic. Afterwards, rclpy is being used to deserialize all
messages from the collected rows of our query result.

import sqlite3

from rclpy.serialization import deserialize_message

topic_id = 0 # Or any desired topic id

conn = sqlite3.connect(bag_file)

cursor = self.conn.cursor ()

query = f"SELECT timestamp , data FROM messages WHERE"

+ "topic_id = {topic_id}"

rows = self.cursor.execute(query ). fetchall ()

deserialized_data = [deserialize_message(data , topic_name)

for timestamp , data in rows]

Code 4.1: Example code on how to query and deserialize ROS 2 messages

In the context of our scenario, ROS 2 collected more image data than pose
information, where occasionally timestamps between pose and image don’t
match. The problem of no matching timestamps becomes an even greater

20



4.2. Physical Setup

problem when observing the amount of collected point cloud data in contrast
to the pose data. In this case not a singular timestamp from the point cloud
data set can be found in the trajectory information. This indicates to be a po-
tential difficulty when we want to match synthetic and real data. If we provide
position and orientation information to our DT in Isaac Sim, we will possibly
synthesize data that doesn’t capture the actual position and rotation when
the sensors in our real setup record data. A straightforward solution would be
to drop real data for which we don’t have any pose information. This leads
however to a loss of approximately 10% of our collected image data and a total
loss of our point cloud data. We want to assemble as much data as possible
to achieve robust results for our selected metrics. Therefore to overcome the
problem of missing path information for some sensory data, we need to apply
interpolation. Since interpolation can be considered as data synthesis, we will
additionally keep a list of the original trajectory data without interpolation,
to assess the accuracy of data captured with and without interpolated poses.
In other words, instead of interpolating poses for missing timestamps, we will
just assign the pose information to the timestamp that is closest to it. We
define the sets as P and P̂ respectively.
The idea of our interpolation approach is to approximate the position and ori-
entation between timestamp intervals, from which we know that the interval
start/end pose and sensor timestamp match. In other words, we want to gen-
erate the missing pose information for a sensor timestamp that is in between
such an interval and is without a match. Given two finite sets of tuples for
our path and sensory data:

P = {(t0, (p0, o0)), (t1, (p1, o1)), ...|∀j > i : ti < tj}
S = {(τ0, d0), (τ1, d1), ...|∀j > i : ti < tj}

(4.1)

where, ti, τi are timestamps, di sensor data, and the tuple (pi, oi) representing
a position in XZY coordinates and orientation as a unit quaternion, at time i.
Let (τλ, dλ) ∈ S be a sensor tuple without a match, i.e. ∀(t, (p, o)) ∈ P : t 6= τλ,
for which we want to interpolate position and rotation of the robot. In order
to interpolate the pose of a robot at τλ the sensor timestamp must be in
between the start and end of the path recording, i.e. t0 ≤ τλ ≤ t|P |. This
means if we have a sensor timestamp without a match that does not fulfill this
condition, we can not interpolate position and orientation for this scenario and
are left with the option to discard this data. When disposing of position and
orientation information at time 0, i.e. (t0, (p0, o0)), we need to adjust our path
data set to assume a new origin point and orientation of our trajectory. Let
(ti, (pi, oi)) ∈ P be our new origin position and orientation. First, we simply
translate the positions in our trajectory by subtracting pi from every position
coming after it, i.e. pj − pi where j ≥ i. Secondly, we need the inverse of our
rotation oi, which is simply the conjugate of a unit quaternion, and multiply
it with every rotation after it, i.e. ojo

−1
i for j ≥ i. Once we do all necessary

translations and rotations, we discard all tuples coming before (ti, (pi, oi)).
After adjusting our path data set, we are ready to apply interpolation for
sensor tuples without position and orientation data.
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The goal now is to find an index k such that the interval tk−1 < τλ < tk+1

holds, so that we can generate a new tuple (tk, (pk, ok)), where tk = τλ and
pk, ok are interpolated. The position is linearly interpolated the following way:

0 ≤ a =
τλ − tk−1
tk+1 − tk−1

≤ 1

pk = (1− a)pk−1 + apk+1

(4.2)

Since we are using unit quaternions to describe rotations of our robot, spherical
linear interpolation (SLERP) was applied to interpolate ok subsequently:

0 ≤ a =
τλ − tk−1
tk+1 − tk−1

≤ 1

θ = arccos(
ok−1 · ok+1

‖ok−1‖‖ok+1‖
)

ok =
sin((1− a)θ)ok−1 + sin(aθ)ok+1

sin(θ)

(4.3)

If however the quaternions are very close to each other, we simply linearly
interpolate, as we did in Equation 4.2. We insert this newly generated tu-
ple (tk, (pk, ok)) into the set P at index k and repeat this process for sensor
tuples for which we don’t find a match. Considering that our path P is a
trajectory, better interpolation methods could have been used, e.g. a cubic-
spline or Bézier curve-based interpolation method. However, since the motion
of our robot does not involve any abrupt changes and the intervals used to
interpolate poses do not have significant time differences, SLERP, and linear
interpolation are more than satisfying for our application. Ultimately after
collecting, extracting, and processing the trajectory of our robot, it is ready
to be used as input to simulate the path of our virtual robot inside Isaac Sim.

4.3. Virtual Setup

In this part of the thesis, the implementation of the second component of
our pipeline will be explained. Subsection 4.3.1 demonstrates the process of
modeling our sensors and recreating our scene from Subsection 4.2.1. Here we
will apply many of the tools Isaac Sim offers to achieve as much realism as
possible and additionally explain the steps taken to reduce modeling errors.
Furthermore, Subsection 4.3.2 discusses in more detail how Isaac Sim was
employed to simulate and generate synthetic data from our virtual scene with
the given input data. Lastly, Section 4.4 exhibits applied post-processing
methods on synthesized image and point cloud data.

4.3.1. Scene Recreation

The effort of recreating our real scenario, which was demonstrated thoroughly
in Subsection 4.2.1, can be separated into three modeling tasks. We first want
to utilize USD and MDL to build the geometric structure and assign materials
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Figure 4.6.: Heptahedron with 7
faces, 10 vertices and
15 edges [48]

Figure 4.7.: Normal map applied to
the Mirror.mdl mate-
rial [49]

for our cube tower. Secondly, we want to model the encapsulating environ-
ment, that isolated our real cube tower from complex geometry. This also
includes modeling the lights we utilized to illuminate the scene. Finally, since
no CAD model of the utilized robot was available, we need to model a simple
structure of our mobile robot, to later place our virtual sensors on.
By initially choosing a simple cube tower for our real scans, the task of model-
ing became less challenging. Since our structure consists of three 30x30x30cm
and thirty 3x3x3cm cubes, no complex geometries have to be modeled man-
ually or imported. However, as it was illustrated in Subsection 4.2.1, two of
the three cubes, namely the mirroring middle and diffusing top cube, are not
perfect cuboids. We are dealing with heptahedrons, which are polyhedrons
with seven faces as can be seen in Figure 4.6. Therefore we need to utilize
USD and create such a mesh manually. Code 4.2 shows how a heptahedron
mesh can be defined inside the human-readable usda file format. The USD
file for the heptahedron is referenced twice in the cube tower USD scene. The
rest of the structure has been built with the GUI of Isaac Sim since the re-
maining construction only consists of cuboids. In the context of materials,
NVIDIA already offers templates that include physically based glass, multi-
lobed materials for dielectric and non-dielectric materials, skin, hair, liquids,
and other materials requiring subsurface scattering or transmissive effects [50].
Hence, instead of defining our materials with MDL, we used the following pre-
sets: Oak.mdl, and Styrofoam.mdl, Mirror.mdl, and Clear Glass.mdl. Since
our real mirroring cube has some slight surface deformation and distortion,
we included a normal map of the Mirror.mdl material and set the roughness
parameter to 0.03. The employed normal map can be seen in Figure 4.7, with
a map strength of 0.06.
Going further with recreating our real scene within Isaac Sim, modeling our
encapsulating environment is the next step. Separating every geometry of our
constructed surroundings, we observe that only cuboids are utilized again. As
a result, all of the mentioned parts of the environment in Subsection 4.2.1,
have been geometrically modeled 1:1 with Isaac Sim’s GUI. To give the struc-
ture a realistic look, as an attempt to close the appearance gap, the following
material presets have been utilized: Oak.mdl, Paper.mdl, Gypsum.mdl. In the
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Figure 4.8.: Virtual cube tower,
isolated by walls with
a single light source

Figure 4.9.: Simple reconstruction
of the mobile robot uti-
lized for scans

case of modeling the light source, a cylinder light was chosen, as its tubular
lighting is beneficial for simulating our light tube. All listed parameters in the
previous section of this chapter for the light source have been transferred to
the virtual version and the ambient light intensity has been set to 0.91.
Lastly, after recreating our cube structure and isolating the environment, we
need to model our mobile robot. Since the LiDAR and stereo camera are both
placed on the robot, it won’t be visible in the point cloud and image data. The
remotely controlled robot becomes visible in raw RGB image data exclusively
because of the mirroring middle cube. However, due to the distance and angle
of the camera, along with the surface roughness and deformation of the mirror
cube, the robot is never to be seen fully or clearly. Hence, no exact replication
of the robot is needed, rather only an approximation. Most of the robot has
been modeled again with the GUI Isaac Sim offers since the majority of it was
constructed with cylinders and cuboids. The final robot geometry has then
been assigned two materials, namely Plastic.mdl and Aluminum Polished.mdl.
The resulting cube tower construction inside the isolating environment and the
virtual mobile robot can be seen in Figure 4.8 and Figure 4.9.

#usda 1.0

(

metersPerUnit = 1

upAxis = "Z"

)

def Xform "Heptahedron" (

kind = "component"

)

{

def Mesh "HeptahedronMesh"

{

int[] faceVertexCounts = [4, 4, 4, 5, 5, 5, 3]

int[] faceVertexIndices = [0, 1, 2, 3, 0, 1, 5, 4, 1, 2,

6, 5, 3, 2, 6, 7, 9, 0, 3, 9, 8,
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4, 4, 8, 7, 6, 5, 8, 7, 9]

point3f [] points = [(-0.15, 0.15, -0.15),

(-0.15, -0.15, -0.15), (0.15 , -0.15, -0.15),

(0.15 , 0.15, -0.15), (-0.15, 0.15, 0.15),

(-0.15, -0.15, 0.15) , (0.15 , -0.15, 0.15) ,

(0.15 , 0.075, 0.15), (0.075 , 0.15, 0.15),

(0.15 , 0.15, 0.075)]

uniform token subdivisionScheme = "none"

}

}

Code 4.2: Heptahedron mesh in USD

4.3.2. Simulation and Synthetic Data Generation

For simulating our real scenario and generating synthetic data from it, an
adaptive standalone Isaac Sim script has been written in Python. Initially,
with Omniverse Kit, we can create a SimulationApp and load all necessary
modules to begin our robotics simulation. By providing a config to the Sim-
ulationApp we are additionally capable of specifying renderer settings. After
successfully creating our SimulationApp, we begin by loading the trajectory
data of our real scenario, into two separate arrays for positions and rotations,
along with camera and LiDAR configurations. To create a 3D world in our
simulator, we dynamically open the USD stage of our recreated scenario and
add the USD file of our virtual mobile robot as a reference.
After successfully loading our scene, the task of replicating our real sensors
virtually is next. For simulating and modeling our real sensors within Isaac
Sim, several different components offered by Omniverse have been utilized to
achieve as much realism as possible. With the help of the USD API, Omni-
verse Kit, ROS 2 as well as the extensions ROS 2 Bridge and Replicator, we
want to model our stereo camera and LiDAR sensor.
Starting with replicating our stereo camera, to initially create a camera in
Isaac Sim we use the USD Geometry Schema. We simply built a primitive
in our simulation stage and set, with the appropriate USD commands, the
parameters of the ZED 2 stereo camera, which were provided dynamically as
a configuration file. We repeat this process for a second time and position the
left and right camera in our ZED 2 primitive which is placed in the local coor-
dinate system of our virtual robot. The coordinate conventions of Omniverse
Isaac Sim tell us, that the world axes use the +Z axis as the up and the +X
axis as the forward direction. On the other hand, the default camera axes are
different from the world axes. Here the up direction is the +Y axis and the
forward direction is the -Z axis. In other words, cameras that we create look
down the -Z axis with the +Y axis upwards. To make the cameras look at our
cube structure, we need to convert the camera axes to the world axes. Given
the camera transform C, of our ZED 2 primitive, which is the parent prim
of both cameras, we rotate the camera by −90◦ around the Z and Y axis as
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illustrated in Equation 4.4.

C ← C ·
[
R(−90◦, z) 0

0T 1

]
·
[
R(−90◦, y) 0

0T 1

]
(4.4)

Now that we successfully created, placed, and adjusted our virtual stereo cam-
era, we need to take additional steps to prepare our camera for image and
camera info data collection. For this purpose, the synthetic data generation
tool Replicator and the ROS 2 Bridge extension will be utilized. First, we
need to enable the ROS 2 bridge extension and then create for each camera a
render product and assign the resolution we want for the out-coming images.
Doing so enables us to take advantage of custom writers Replicator provides,
to process the image data stream on every physics step. In our scenario, the
ROS2PublishCameraInfo writer is employed, leveraging the identical named
ROS 2 node to publish the intrinsic camera matrix and several other param-
eters. Furthermore, the LdrColorSDROS2PublishImage writer is applied to
publish the raw RGB image data of each camera. By publishing these data
topics we are now able to record all synthetically created data with ROS 2, as
we did in our real scenario.
If one wants to create a virtual LiDAR sensor, Isaac Sim offers two methods
built on different architectures. By using the PhysX based LiDAR sensor, our
simulated LiDAR utilizes ray casting and the PhysX Collision API to deter-
mine how far an emitted ray traveled before colliding with an object in the
scene [51]. For this, it is important to create a Physics Scene in our stage be-
forehand, because by creating it we provide the necessary physics properties
that the PhysX based LiDAR sensor needs. For objects to be detected by the
LiDAR sensor, one needs to add a Physics collider to it. With the USD API
and Omniverse Kit, we can create such a PhysX based LiDAR sensor with
all its properties, e.g. make it stationary or rotary, and also attach a Physics
collider to objects that we want to detect. We can then collect data such as
depth, zenith, azimuth, and point cloud data at each physics step. One big
advantage of PhysX based LiDAR sensors is, that we can attach semantics to
our objects, i.e. labeling them. The LiDAR sensor will return semantic data,
which is ideal for training models that deal with problems such as segmentation
and object recognition. However, we will not make use of this functionality, as
it is not necessary for our evaluation in this thesis. Unfortunately, the PhysX
based LiDAR comes with a significant disadvantage considering realism. Since
the PhysX LiDAR sensor applies ray casting and Physics Collisions, it doesn’t
take into account what type of material the object consists of when hit with
a ray. Therefore, objects that are completely transparent or highly reflective
appear to be fully opaque when observing the resulting point cloud data from
the LiDAR sensor. As we reviewed in Section 3.2, this appears to be a common
ToF replication and leads to realism problems for simulated LiDAR sensors.
As a response to that issue, NVIDIA proposed an alternative to the PhysX
based LiDAR sensor. On the 17th of December 2022, NVIDIA released Isaac
Sim 2022.2.0, where the RTX LiDAR sensor has been added to the repository
of sensors Isaac Sim offers. The RTX LiDAR sensors utilize the RTX ray
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tracing technology in render time on the GPU with RTX hardware [52]. The
underlying crucial difference to the former introduced LiDAR variant is that
now the type of material is considered. By creating a customized LiDAR con-
fig file we are able to simulate the exact parameters of our real sensor. Apart
from specifying the parameters of our LiDAR sensor, we can also make our
simulated LiDAR noisy. For example, we can employ a Gaussian beam as a
ray type instead of an idealized one or add mean and standard deviation (SD)
errors to the azimuth and elevation of our sensor. Sensor materials are an-
other important factor for the accomplishment of realism in simulated LiDAR
sensors. By assigning predefined sensor material types to material names on
a USD stage, we can make rays interact differently with materials when they
hit the surface of an object. Contrary to its benefits, material properties such
as IoR, specularity, and other material properties do not affect the sensor ma-
terial. In other words, if we assign the sensor material GlassStandard on two
different glass materials with different properties, they will behave the same
when a beam hits the surface of the glass.
From this observation, we can already assume, that the latter introduced sen-
sor variant is a greater attempt at achieving realism. We utilize both sensor
variants, to determine how well both LiDAR sensor implementations perform.
For the RTX LiDAR, a custom LiDAR config file has been created with all
the mentioned specifications listed in Table 4.2. Moreover, we assigned the
following sensor types to their respective materials: OakTreeBark, FabricStan-
dard, MetalSilver and GlassStandard. When creating our RTX LiDAR with
Omniverse Kit, the sensor behaves like a camera and thus we need to rotate
it like we did in Equation 4.4. To set up our PhysX LiDAR sensor, we only
need to provide our LiDAR parameters during creation and add a collider to
our virtual cube tower, since we are only interested in points from our cube
construction when acquiring the synthesized data. By setting up all necessary
configurations for our RTX and PhysX LiDAR sensor, we are now ready to
place it in the local coordinate system of our virtual robot. Finally, we make
use of Replicator and ROS 2 Bridge again, to create a render product for our
RTX sensor, since it is a camera. We attach this render product to the custom
writer RtxLidarROS2PublishPointCloud which publishes, as the name already
suggests, point cloud data at each physics step in our simulation. To acquire
the point cloud data from our PhysX LiDAR sensor, we apply a LiDAR sensor
interface and save point clouds at each physics step.
Lastly, we need to register a physics callback function, that will be executed
at each physics step inside our simulation. We require this step function, to
move and orient our robot with all its sensors to the according position and
rotation. At each time step in the simulation, we provide the next recorded
pose of the real robot, to a set pose function, that will move and rotate our
virtual robot primitive in our 3D world. For this, we utilize the USD API,
to add a transform operation. By applying the Graphics Foundation module
of the USD API, we can create a homogenous 4x4 transformation matrix T
for our robot prim. We set the translation t and rotation R of our transform
T with our provided 3D position and quaternion vectors. Doing so will now
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translate and orient our virtual robot at each time step, exactly as our real
robot was for each recorded timestamp. Additionally, we publish raw RGB
images, camera info, and point cloud data via Replicator’s writers that we
attached to our sensors render products.

4.4. Post-processing

While acquiring data from our real and virtual environment, a handful of un-
necessary information was collected. Moreover, in the context of our synthetic
data, no post-processing methods have been employed yet and thus will be
discussed here. We apply these processing methods such that we create more
realism in our synthesized data and make the data evaluation fair.
The collected real and virtual RTX LiDAR point cloud data recorded the sur-
rounding environment during all tests and thus saved an exceedingly amount
of points, which are not used for our evaluation. As we can see, Figure 4.10
demonstrates this problem and we observe that the sensor detects humans and
other objects in its range. As already mentioned, the majority of those points
are not of interest to us, since we only focus on creating accurate synthetic
data of our cube tower. Therefore, to alleviate this issue, we can apply an
initial mask to our real and synthetic point cloud data, that cuts off all points
outside a specific area around the cube tower. In Figure 4.11, we visualize
what a point cloud sample looks like after this process. Following the initial
masking of our point cloud, a statistical outlier removal approach was chosen
to eliminate points that were not cut off during the initial cleansing. 20 neigh-
boring points have been taken into account to calculate the average distance
with an SD of 3. Figure 4.12 visualizes in red the removed outliers of our
sample point cloud. As a last processing step, the DBSCAN (Density-based
spatial clustering of applications with noise) cluster algorithm was utilized to
detect groups of points and then eliminate the clusters that were furthest away
from the point of origin. This processing step was necessary since some sur-
face artifacts with many neighboring points were not outsourced during initial
masking and outlier elimination. We applied a maximal distance ε of 0.2 with
a minimum of 8 samples, for a point to be considered the core point of the
neighborhood. The final resulting point cloud can be seen from a sample in
Figure 4.13. As advised by researchers Gusmão G.F., Barbosa C.R.H., and
Raposo A.B., after cleansing our point cloud data, we apply a Gaussian noise
filter N(0, 1 · 10−3) to our synthetic point cloud data. The Euclidean distance
has been selected for all distance calculations in the above-mentioned process-
ing steps.
In terms of the recorded image data for our real images, not much post-
processing has been done, since we are interested in evaluating the raw data
here. However, for our synthetic images, we want to achieve more realism by
applying post-processing methods. For real and synthetic images no unneces-
sary information has to be cut out, like we did for point clouds, considering we
want to determine the accuracy of the full image. On account of the fact that
virtual cameras are not affected by noise like real cameras are, we first want to
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apply a Gaussian noise filter to our image render pipeline. This is best done
by utilizing Replicator, to augment an existing Annotator that we attached to
our camera render products. We create a simple Gaussian noise kernel func-
tion, register it as a new Annotator, and compose it with the existing RGB
Annotator, as can be seen in Code 4.3. Doing so enables us to directly ma-
nipulate the render pipeline instead of applying a noise kernel after collecting
image data. Additionally, we can introduce many post-processing methods
that Isaac Sim offers out of the box, such as chromatic aberration and motion
blur. Considering these post-processing methods require additional resources
and time to render, most of the parameters were left on default since these
are more than satisfying. Additionally, many of the post-processing methods,
that could have been introduced to our image synthesis pipeline, would add
effects to our synthetic images which are not found in our real images.

import numpy as np

import omni.kit

import omni.replicator.core as rep

# ... create camera and render product ...

def gaussian_noise(data_in: np.ndarray , kernel_seed ,

mu: float = 0.0, sigma: float = 25.0):

np.random.seed(kernel_seed)

gn = np.random.normal(mu, sigma , data_in.shape)

return np.clip(data_in + gn, 0, 255)

gauss_annot = rep.annotators.Augmentation.

from_function(gaussian_noise_np , kernel_seed =123)

rgb_annot = rep.AnnotatorRegistry.get_annotator("rgb")

rgb_annot.augment(gauss_annot)

rgb_annot.attach ([ render_product ])

Code 4.3: Augment existing Annotator with custom noise function
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Figure 4.10.: Point cloud sample
before processing

Figure 4.11.: Point cloud sample
after initial masking

Figure 4.12.: Removal of outliers
with statistical ap-
proach

Figure 4.13.: Final result of point
cloud sample after
cluster removal
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5. Results

To evaluate Isaac Sim’s capabilities in creating accurate synthetic data, a se-
ries of simulations with several parameters have been conducted to acquire
synthesized images and point clouds. Out of 6 synthetically generated data
sets, 4 consist of point cloud data, while the remaining two are image data sets.
Since we are interested in the quality of our synthetically generated images
and point clouds, a handful of image quality and point cloud similarity mea-
sures have been selected. Section 5.1 will discuss in more detail the employed
measurement metrics. Following this section of this chapter, Section 5.2 and
Section 5.3 will present and discuss the results of our image quality and point
cloud similarity assessment.

5.1. Metrics

To judge the performance and accuracy of Isaac Sim, we ran all simulations on
a multi-GPU-equipped machine. The exact specifications are: Four NVIDIA
RTX A4000 GPUs with 46GB GDDR6 VRAM, AMD EPYC 7443 24-Core
Processor, and 64GB DDR4 RAM with Linux as the operating system. How-
ever, during all test only one RTX A4000 was utilized and Isaac Sim only
exhausted 1.2-2.2Gb of VRAM during all simulations. Isaac Sim has been ex-
ecuted on a docker container in headless mode for all conducted experiments.
For rendering, the Ray Tracing algorithm, provided by NVIDIA, has been
utilized instead of Path Tracing, since the latter variant took too much time
in generating synthetic images in our scenario. DLSS, NVIDIA’s anti-aliasing
technology, was employed and is also the standard anti-aliasing method when
using Isacc Sim. Since virtual LiDAR sensors are not affected by render set-
tings, no further adjustments had to be done during point cloud collection.
For our similarity benchmark, a collection of spatial and frequency domain im-
age quality and point cloud similarity measures have been selected. Table 5.1
demonstrates an outline for all metrics and their respective value range. Much
of the demonstrated literature, in the context of data synthesis methods, in
this work, assesses the quality of the synthetic data by utilizing a ML model.
This is done, by comparing the accuracy of a model trained with a well-studied
or self-obtained real data set, in contrast to a model trained with synthetic
data [23, 28, 33, 34, 35]. For this work, the choice was made to use numer-
ical measurement benchmarks, as utilizing ML models would require more
preparation and divert the focus away from this work’s primary objective. To
calculate all listed metrics image-similarity-measures [53] and point-cloud-utils
[54] were utilized, to accomplish this task.
For our evaluation, we split the image and point cloud data sets into two cat-
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egories, depending if a trajectory with interpolated poses has been used to
acquire the synthesized data. Furthermore, in the context of our point cloud
data, we differentiate here more, depending if the PhysX or RTX LiDAR was
employed.

Image metrics

Metric Description Value Range

RMSE root-mean-square error [0,∞)

PSNR peak signal-to-noise ratio [0,∞)

SRE signal-to-reconstruction error ratio [0,∞)

SSIM structural similarity index [0, 1]

Point cloud metrics

RMSE root-mean-square error [0,∞)

HD Hausdorff distance [0,∞)

CD Chamfer distance [0,∞)

Table 5.1.: Applied image and point cloud metrics

5.2. Image Quality Measurements

After an initial collection of 3332 RGB images from our real scan, only 2237
images were selected for a fair evaluation. Of these selected raw images approx-
imately 4% had no matching pose information. Observing Table 5.2, we can
examine that, there are no differences in values between synthesized images
from interpolated and non-interpolated poses. For our pixel-by-pixel compar-
ison measurements, namely RMSE and PSNR, we receive relatively moderate
average values of 0.18 and 15.04dB, with an SD of 0.03 and 1.46. Illustrated
in Figure 5.1 (a) we can see the sometimes rapid deviations of the collected
measurements. We also observed that measurements, where the robot had
a medium distance of 1.2-1.8m from the cube tower, resulted in improving
results. Whereas, worse values emerged from relatively close distances to the
cube tower. However, since RMSE and PSNR are hard to interpret, we are
not fully able to deduce, how well we were able to reconstruct our real images
from synthesizing with Isaac Sim.
For SRE and our perception-based metric SSIM, we receive more information
about the true quality of our synthetic images. First of all, since SRE is better
suited for images where the brightness can vary, we receive higher and more
consistent values than we do for our PSNR evaluation, as can be seen in Fig-
ure 5.1 (b). Additionally, SSIM also remains during all distances fairly stable,
with peaks at 0.4m gaps to the cube tower. Figure 5.3 and Figure 5.2 illustrate
the real and synthetic images for which we received the highest SSIM and SRE
along with RMSE and PSNR values. Here we can examine more closely the
differences between the real and reconstructed setup. The virtual environment
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inside Isaac Sim seems to be less illuminated by other light sources, making
it appear darker. Moreover, we can see that the front side of the mirroring
cube reflects bright objects in the background, which were not modeled in
Isaac Sim. As already mentioned in Chapter 4, the issue of the front being
fully open and the upper back wall also having no cover to eliminate light re-
flections, is proposed to be the drawback of our reconstruction. Additionally,
during our real scans with our stereo camera, the ZED 2 was not perfectly
horizontally aligned and the movement of the robot created some uncertainty
in the cameras true orientation. While modeling the virtual stereo camera it
was assumed that the camera is perfectly horizontally aligned, which caused
for some synthetic images to have slightly different orientations, in contrast to
their real counterpart.
By extracting contours from the difference of our real and synthetic image,
we are able to receive more insight into fall-backs of our virtual environment.
Figure 5.4 demonstrates this process on the previously examined image pair
sample. Highlighted on the left top and bottom images with green contours,
we observe that regions where no exact replication of our real setup was done,
like reflecting duct tape, and slight shifts in environment or robot positions,
lead to the biggest influence in image dissimilarity. In the top right gray-scale
image, the divergence of positioning is illustrated best.
Note that, the geometric reconstruction in a simulator plays a crucial role in
achieving high similarity measures for images, as we saw in our image pair
sample. Considering, that only an approximation of our real setup was vir-
tually modeled, the outcome of these results can be viewed as a success for a
good approximation. Therefore, With an average SSIM value of 0.71 and an
SD of 0.02, we can reason that we achieved a good replication of our real RGB
images.

Average Value Best Value

Metric

Path
P P̂ P P̂

RMSE 0.18 0.18 0.13 0.13

PSNR 15.04 15.04 17.23 17.23

SRE 51.52 51.52 52.80 52.80

SSIM 0.71 0.71 0.78 0.78

Table 5.2.: Average metric values for images collected with and without interpo-
lated positions. No difference between both data sets can be observed
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(a)

(b)

Figure 5.1.: Evolution of metrics during image synthesis. Color encodes the dis-
tance the robot had to the cube tower. (a) Charts RMSE and PSNR
values during image synthesis. Measurements are slightly volatile. (b)
Charts for SSIM and SRE values during image synthesis. Measure-
ments are much more stable then in (a).

Figure 5.2.: On the left we can find the recorded image of the ZED 2 camera and
on the right the synthesized image from Isaac Sim. RMSE of 0.17 and
PSNR of 17.22 at a distance of 0.96m to the cube tower
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Figure 5.3.: Top are the real recorded images and on the bottom the respective
synthesized images, generated at the same timestamp, from Isaac Sim.
SSIM of 0.78 and SRE of 51dB with a distance of 0.6m on the left.
SSIM of 0.69 and SRE of 52.8dB with a distance of 1.1m on the right

Figure 5.4.: On the left are contours, highlighting the differences between the top
real and bottom synthetic image. Top right illustrates in gray-scale
disparity. Darker regions mean greater disparity. Bottom right shows
thresholded regions with biggest dissimilarity.
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5.3. Point Cloud Similarity Measurements

During our real scan, we collected a total of 1161 point clouds, from which
we selected 748 to evaluate the similarity between the real and synthetically
generated data. The remaining 413 point clouds, which were cut off from this
assessment, were either at the start of the official recording or were outside
of the timestamp range of the recorded pose data. Table 5.3 illustrates the
average and best values for PhysX and RTX LiDAR sensors with and without
interpolated trajectories. Since no path timestamps matched the timestamps
of the recorded point cloud data, the whole trajectory had to be interpolated.
In contrast to our evaluation of the synthetic image data, our synthetic point
clouds showed more similarity to the real scans when interpolating poses, in-
stead of assigning the pose of the nearest timestamp.

Average Value Best Value

Metric

Path
PRTX P̂RTX PPhysX P̂PhysX PRTX P̂RTX PPhysX P̂PhysX

RMSE 0.051 0.054 0.046 0.047 0.023 0.023 0.018 0.019

CD 0.12 0.13 0.1 0.1 0.052 0.051 0.045 0.046

HD 0.27 0.28 0.28 0.28 0.1 0.11 0.084 0.084

Table 5.3.: Average metric values for RTX and PhysX point clouds collected with
and without interpolated positions. Trajectories without interpolated
poses show in general weaker similarities to the real point cloud data.
Point clouds collected from the RTX LiDAR have the best HD distance,
while PhysX yields better RMSE and CD distance

Furthermore, we can observe from our measurement data that the PhysX
LiDAR sensor holds the best RMSE and Chamfer distance results with an
average dissimilarity of 0.046m and 0.1m. One might assume, that from these
values, the PyhsX LiDAR sensor is a greater attempt at simulating a real
LiDAR sensor. However, RMSE may not capture outliers or localized differ-
ences, and Chamfer, on the other hand, is very sensitive to outliers and also
may overlook dense groups of points [55]. Hausdorff can also be influenced
by extreme values. Figure 5.5 illustrates the problem of the evaluated metrics
for some point cloud samples. Here we can see how the RMSE, Chamfer, and
Hausdorff distances are equal, even though the RTX point cloud sample is a
greater replication of the real scan than the PhysX point cloud sample. Addi-
tionally, we examine a mutual drawback in replicating LiDAR behavior with
reflecting surfaces. Both sensors detected the middle mirroring cube, while
the real LiDAR sensor did not receive any rays from hitting the mirror sur-
face. Despite that, the RTX LiDAR sensor successfully replicated the raydrop
behavior with our bottom glass cube, while the PhysX sensor detected it as
fully opaque. The average amount of data points collected from our real scan
is 291 points, while our RTX sensor collected an average of 350 and the PhysX
sensor 1036 points. From the illustrated point cloud sample in Figure 5.5, we

36



5.3. Point Cloud Similarity Measurements

Figure 5.5.: Left and right, we have the actual point cloud depicted in green. The
blue colored point cloud on the left originates from the RTX LiDAR,
the one on the right in orange is from the PhysX LiDAR. Both RTX
and PhysX share an RMSE of 0.02, a CD of 0.11, and an HD of 0.37

directly observe that the RTX LiDAR sensor almost collects as many points
as the real scan did, while the PhysX sensor collected an exceedingly large
amount of points. The scan lines of the PhysX LiDAR sensor also appear to
be much more frequent than those of its real counterpart. Thus, we can see
that the PhysX variant detects too much detail as illustrated in Figure 5.6.
Illustrated in Figure 5.7 (a) we can observe how our similarity measurements
changed during simulation with various distances. From the Chamfer and
Hausdorff chart, we can interpret the increase in dissimilarity at far ranges
for distances to the cube tower at > 1.6m, to be the issue of detecting the
glass cube. The lowest values can be found for ranges under 1.6m, where the
mirror cube is in the dead zone of the PhysX sensor. In the rightmost chart for
the Hausdorff measurements, this phenomenon is seen the most. Going from
the PhysX implementation to the RTX LiDAR variant, we can see that the
RMSE chart behaves almost identically. In fact, the SD of both RMSE mea-
surements is 0.02. The Chamfer chart of the RTX LiDAR sensor, however,
examines lower dissimilarity in far regions in contrast to the PhysX sensor.
For the Hausdorff measurements, we can also see that results are much more
robust and not as rapidly changing as for the PhysX variant. The RTX sensor
yields an SD of 0.02 for the calculated Hausdorff distances, while the PhysX
sensor holds an SD of 0.09.
We can conclude from this assessment that the RTX LiDAR sensor produced
more accurate point cloud data than the PhysX variant. Therefore are the
dissimilarity measurements more to be trusted from the RTX sensor. Since
no exact positions and orientations were collected for the recording of the real
point cloud data, the average distances can be considered low and consequently
a good approximation of a real LiDAR sensor. Unfortunately, no evaluation
could be made with the different ray types that Isaac Sim offers for its RTX
LiDAR sensor. Since real light rays emitted from LiDAR are not ideal rays,
and instead lose intensity when further away from the center, the Gaussian
and uniform beam types could improve realism even more.
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Figure 5.6.: On either side, the genuine point cloud is illustrated in green. The
left showcases the blue point cloud from the RTX LiDAR, while the
right features an orange point cloud from the PhysX LiDAR sensor.
In comparison to both the RTX and the actual point cloud, the PhysX
point cloud exhibits too much detail

(a)

(b)

Figure 5.7.: Metrics of point cloud synthesis during simulation. Color encodes
distance to the cube tower. (a) Charts of the PhysX LiDAR scan for
RMSE, CD and HD values. Measurements deviating drastically. (b)
Charts of the RTX LiDAR scan for RMSE, CD and HD values. RMSE
and CD are similar to PhysX, while HD seems to be much stabler.
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6. Conclusion

The main motivation of this thesis was to evaluate NVIDIA’s Omniverse Isaac
Sim capabilities as a simulator and synthetic data generation tool. Thus, an
in-depth analysis of the need for synthetic data and the approach chosen to
asses Isaac Sim was demonstrated.
Chapter 1 started by, introducing the importance and need of high quality
and large data sets, in the context of AVs. With current real-world appli-
cations, we saw that time and other resources are suffering under traditional
data collection procedures. Synthetic data and its generation methods have
thus, proposed to be the best solution to alleviate this issue.
Following the introduction of this thesis, Chapter 2 provided important funda-
mentals, necessary for a better understanding of the used technologies. This
included the popular robotics middleware ROS 2, the ToF sensor LiDAR, and
Isaac Sim.
With Chapter 3, the ongoing state of research considering synthetic image and
point cloud data, along with data synthesis methods, was shown. For both
data categories, a collection of well-studied data sets was demonstrated, in the
company with their current pitfalls when regarding modeling realism. Closing
this chapter of this work, was a discussion about the domain gap problem
between real and synthetic data.
In Chapter 4, design and research goals for analyzing Isaac Sim were demon-
strated. All employed technologies and the chosen scanning environment were
discussed. Following the data collection of our physical setup, an in-depth
presentation of the system architecture, built with Isaac Sim, has been pro-
posed to realistically and accurately simulate our real scan. Here, many of the
introduced preliminaries of Isaac Sim were applied, to geometrically model our
environment and construct our virtual stereo camera and LiDAR sensor.
Finally, in Chapter 5 of this thesis, the results of our quality and similar-
ity measurements between real and synthetic data have been presented. In
this instance, we observed that interpolated trajectories had no significant in-
fluence on the quality of our generated synthetic images. Yet, point cloud
similarity decreased when no interpolation of poses was used. Given that
only 4% of image timestamps and all timestamps of the recorded point cloud
data had no match, we can reason that the point cloud measurements had an
increase of similarity to the real data since we approximated missing poses.
Whereas, the majority of poses where the stereo camera captured an image,
were given and therefore path interpolation had no influence. Furthermore,
we have seen good approximation values of our synthetic images to their real
counterparts, considering that no exact replication of the real scene was built.
As was pointed out in the methodology of this work, it was suspected that
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the influence of the accurate 3D reconstruction in Isaac Sim, will have a big
influence on the resulting image similarity measurements. Utilizing more so-
phisticated rendering techniques provided by NVIDIA, like path tracing, and
an accurate replication of the real scanning environment would very likely
boost the quality of our synthetic images. For our virtual LiDAR variants, we
deduced that the RTX LiDAR sensor was a greater attempt at modeling our
real employed LiDAR sensor, instead of the PhysX one. We have seen that the
PhysX LiDAR implements current pitfalls of common ToF implementations
that we investigated in Section 3.2, where raydrop and noise were not modeled
realistically. However, in the case of the RTX LiDAR sensor, we received a
very well approximation of our real point cloud data. In contrast to the former
variant, the RTX LiDAR sensor simulated accurate raydrop behavior for our
glass material scenario. Moreover, with the inclusion of error parameters to
the RTX LiDAR sensor, noise was also replicated in a realistic way and could
have been even more improved if Gaussian or uniform beams would have been
employed. Within this work, we were unfortunately unable to reproduce the
behavior of our actual LiDAR in the case of the mirroring cube using either
the PhysX or RTX LiDAR sensors.

6.1. Outlook

Throughout this thesis, several problems and strategies to improve the analy-
sis were encountered. Considering the real scanning environment, limitations
existed on how well a controlled surrounding, in which we know all signifi-
cant parameters, could be constructed. An optimal scanning environment in
this case would be, a barely illuminated and accurately measured enclosure
without any structures inside it. In our test, we could see that complex geom-
etry outside our structure still influenced the illumination of the scene. Few
or multiple controlled known light sources, casting light on a simple scanning
structure (like our cube tower), would simplify reconstructing the real environ-
ment as well. Another beneficial implementation would be the inclusion of a
well-known start and end position of the robot that scanned the environment.
Moving forward, a handful of standard robotics simulators were presented,
but no attempt to recreate this experiment with industry-standard tools like
Gazebo or Unity has been made. Comparing generated synthetic image and
point cloud data from Isaac Sim against other simulators would be an inter-
esting evaluation, to determine how well Isaac Sim operates against such tools
for which a lot of literature already exists.
Unfortunately for this work, no evaluation of Isaac Sim’s depth sensing capa-
bilities could have been made, since an error during data collection prevented
us from recording depth of our stereo camera. Additionally, the employed ROS
2 wrapper for the ZED SDK, currently does not support input from virtual
cameras, and thus would not enable us to asses the resulting depth images
fairly anyways. Despite this, NVIDIA offers their own DNN stereo disparity
model, that can be supplied with ROS image and timestamp topics, to calcu-
late stereo disparity [56]. This would make another interesting research topic,
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to compare, if accurate depth images could be achieved with NVIDIA’s stereo
disparity DNN model.
As already mentioned at the beginning of Chapter 5 in Section 5.1, many re-
searchers assess the accuracy of their synthesized data, by training ML models
with real and generated data sets. For future work, it would be beneficial to
examine the synthetically generated images and point clouds, for problems
such as object recognition, segmentation, or 3D pose estimation, against mod-
els trained with our real data.
Looking ahead, more research in decreasing the domain gap between synthetic
and real data could be made, by applying hybrid solutions of simulators and
GANs along with domain randomization.

41





Bibliography

[1] Kyle Wiggers. Waymo’s autonomous cars have driven 20 million miles
on public roads. VentureBeat, Jan. 2020. url: https://venturebeat.
com / ai / waymos - autonomous - cars - have - driven - 20 - million -

miles-on-public-roads/ (visited on 06/25/2023).

[2] Shahryar SOROOSHIAN and Shrikant PANIGRAHI. “Impacts of the
4th Industrial Revolution on Industries”. In: Walailak Journal of Science
and Technology (WJST) 17.8 (Aug. 2020), pp. 903–915. doi: 10.48048/
wjst.2020.7287. url: https://wjst.wu.ac.th/index.php/wjst/
article/view/7287.

[3] Darrell Etherington. Waymo has now driven 10 billion autonomous miles
in simulation. TechCrunch, July 2019. url: https://techcrunch.com/
2019/07/10/waymo- has- now- driven- 10- billion- autonomous-

miles-in-simulation/?guccounter=1 (visited on 06/25/2023).

[4] Alvaro Figueira and Bruno Vaz. “Survey on Synthetic Data Generation,
Evaluation Methods and GANs”. In: Mathematics 10.15 (2022). issn:
2227-7390. doi: 10.3390/math10152733. url: https://www.mdpi.

com/2227-7390/10/15/2733.

[5] Stefan Mihai, Mahnoor Yaqoob, Dang V. Hung, William Davis, et al.
“Digital Twins: A Survey on Enabling Technologies, Challenges, Trends
and Future Prospects”. In: IEEE Communications Surveys and Tutorials
24.4 (2022), pp. 2255–2291. doi: 10.1109/COMST.2022.3208773.

[6] Steve Borkman, Adam Crespi, Saurav Dhakad, Sujoy Ganguly, et al.
Unity Perception: Generate Synthetic Data for Computer Vision. 2021.
arXiv: 2107.04259 [cs.CV].

[7] NVIDIA Omniverse. https://www.nvidia.com/en-us/omniverse/.
Accessed: 14 June 2023.

[8] Danny Shapiro. Mercedes-Benz to Build Factories With Omniverse. NVIDIA
Blog, Jan. 2023. url: https://blogs.nvidia.com/blog/2023/01/03/
mercedes-benz-next-gen-factories-omniverse/.

[9] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. “Robot Operating System 2: Design, architecture, and uses in
the wild”. In: Science Robotics 7.66 (2022), eabm6074.

[10] Misha Urooj Khan, Syed Azhar Ali Zaidi, Arslan Ishtiaq, Syeda Ume
Rubab Bukhari, Sana Samer, and Ayesha Farman. “A comparative sur-
vey of lidar-slam and lidar based sensor technologies”. In: 2021 Mo-
hammad Ali Jinnah University International Conference on Computing
(MAJICC). IEEE. 2021, pp. 1–8.

43

https://venturebeat.com/ai/waymos-autonomous-cars-have-driven-20-million-miles-on-public-roads/
https://venturebeat.com/ai/waymos-autonomous-cars-have-driven-20-million-miles-on-public-roads/
https://venturebeat.com/ai/waymos-autonomous-cars-have-driven-20-million-miles-on-public-roads/
https://doi.org/10.48048/wjst.2020.7287
https://doi.org/10.48048/wjst.2020.7287
https://wjst.wu.ac.th/index.php/wjst/article/view/7287
https://wjst.wu.ac.th/index.php/wjst/article/view/7287
https://techcrunch.com/2019/07/10/waymo-has-now-driven-10-billion-autonomous-miles-in-simulation/?guccounter=1
https://techcrunch.com/2019/07/10/waymo-has-now-driven-10-billion-autonomous-miles-in-simulation/?guccounter=1
https://techcrunch.com/2019/07/10/waymo-has-now-driven-10-billion-autonomous-miles-in-simulation/?guccounter=1
https://doi.org/10.3390/math10152733
https://www.mdpi.com/2227-7390/10/15/2733
https://www.mdpi.com/2227-7390/10/15/2733
https://doi.org/10.1109/COMST.2022.3208773
https://arxiv.org/abs/2107.04259
https://www.nvidia.com/en-us/omniverse/
https://blogs.nvidia.com/blog/2023/01/03/mercedes-benz-next-gen-factories-omniverse/
https://blogs.nvidia.com/blog/2023/01/03/mercedes-benz-next-gen-factories-omniverse/


Bibliography

[11] Velodyne Lidar. Velodyne’s Guide to Lidar Wavelengths. Velodyne Li-
dar, Nov. 2018. url: https://velodynelidar.com/blog/guide-to-
lidar-wavelengths/ (visited on 09/25/2023).

[12] Jamie Carter, Keil Schmid, Kirk Waters, Lindy Betzhold, Brian Hadley,
Rebecca Mataosky, and Jennifer Halleran. “Lidar 101: An Introduction
to Lidar Technology, Data, and Applications. National Oceanic and At-
mospheric Administration (NOAA) Coastal Services Center, Charleston,
South Carolina”. In: Charleston, SC (2012).

[13] Paul Lienert and Jane Lanhee Lee. “Lidar laser-sensing technology:
from self-driving cars to dance contests”. In: Reuters (Jan. 2020). url:
https://www.reuters.com/article/us-tech-ces-lidar/lidar-

laser-sensing-technology-from-self-driving-cars-to-dance-

contests-idUSKBN1Z62AS (visited on 09/25/2023).

[14] Time of flight. Wikipedia, Sept. 2020. url: https://en.wikipedia.
org/wiki/Time_of_flight (visited on 09/27/2023).

[15] Wikipedia Contributors. Spherical coordinate system. Wikipedia, Dec.
2019. url: https://en.wikipedia.org/wiki/Spherical_coordinate_
system (visited on 09/27/2023).

[16] Isaac Sim. NVIDIA Developer. url: https://developer.nvidia.com/
isaac-sim (visited on 09/24/2023).

[17] USD Home — Universal Scene Description 23.08 documentation. openusd.org.
url: https://openusd.org/release/index.html (visited on 09/24/2023).

[18] Material Definition Language from NVIDIA. NVIDIA. url: https://
www.nvidia.com/en- us/design- visualization/technologies/

material-definition-language/ (visited on 09/24/2023).

[19] Replicator — Omniverse Extensions latest documentation. docs.omniverse.nvidia.com.
url: https://docs.omniverse.nvidia.com/extensions/latest/
ext_replicator.html (visited on 09/24/2023).

[20] Annotators Information — Omniverse Extensions latest documentation.
docs.omniverse.nvidia.com. url: https://docs.omniverse.nvidia.
com/extensions/latest/ext_replicator/annotators_details.

html (visited on 09/24/2023).

[21] Introduction — Omniverse Nucleus latest documentation. docs.omniverse.nvidia.com.
url: https://docs.omniverse.nvidia.com/nucleus/latest/index.
html (visited on 09/24/2023).

[22] Sergey I. Nikolenko. Synthetic Data for Deep Learning. 2019. arXiv:
1909.11512 [cs.LG].

[23] Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Häusser, Caner
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A. Appendix

A.1. Git Repository

For the purpose of this work, a git project under the URL
https://git.cs.uni-kl.de/p noras19/cubetower-dt has been developed. The repos-
itory features all scripts and USD scenes utilized in this work.

A.2. Limits of Reproducibility

Collected real image and point cloud data, are not publicly available. On the
other hand, the recorded trajectory and sensor timestamps data are available.
Along with the provided assets, the virtual simulation can be replicated and
synthetic data generated.
Furthermore, the code to calculate similarity measurements between real and
synthetic data is also included in the git repository. Real image and point cloud
data, however, are prerequisites for calculating the measurements highlighted
in this work.
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